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L0(x, ω0) = Le(x, ω0) + ∫Ω fr(x, ωi, ω0) Li(x, ωi) (ωi ⋅ n) dωi

To find the light towards the viewer from a specific point, we sum the 
light emitted form such point plus the integral within the unit 
hemisphere of the light coming from a any given direction multiplied 
by the chances of such light rays bouncing towards the viewer and 
also by the irradiance factor over the normal at the point.


Note that incoming light is also computed by that very formula, which 
makes this exhaustingly recursive.

Figure 1: A formula from computer graphics, visually embellished to improve its readability, from [5] (CC BY-NC-SA 4.0). One 
author from our interview study created this formula and the accompanying colorized diagram and text to teach readers of his blog how to 
implement the formula in source code. Like many of the formulas analyzed in this paper, this one makes use of color to draw attention to 
conceptually important expressions in the formula, and to help a reader visually link those expressions to complementary diagrams and 
prose. Contents of the blog post (formula, prose, and diagram) have been rearranged in this fgure to emphasize the formula. 

ABSTRACT 
With the increasing growth and impact of machine learning and 
other math-intensive felds, it is more important than ever to broaden 
access to mathematical notation. Can new visual and interactive 
displays help a wider readership successfully engage with notation? 
This paper provides the frst detailed qualitative analysis of math 
augmentation—the practice of embellishing notation with novel 
visual design patterns to improve its readability. We present two 
qualitative studies of the practice of math augmentation. First is 
an analysis of 1.1k augmentations to 281 formulas in 47 blogs, text-
books, and other documents containing mathematical expressions. 
Second is an interview study with 12 authors who had previously 
designed custom math augmentations (“maugs”). This paper con-
tributes a comprehensive inventory of the kinds of maugs that 
appear in math documents, and a detailed account of how authors’ 
tools ought to be redesigned to support efcient creation of math 
augmentations. These studies open a critical new design space for 
HCI researchers and interface designers. 

This work is licensed under a Creative Commons 
Attribution-NonCommercial-ShareAlike International 4.0 License. 

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9157-3/22/04. 
https://doi.org/10.1145/3491102.3501932 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and tools. 

KEYWORDS 
mathematical notation, authoring, details-on-demand, visual links 

ACM Reference Format: 
Andrew Head, Amber Xie, and Marti A. Hearst. 2022. Math Augmentation: 
How Authors Enhance the Readability of Formulas using Novel Visual 
Design Practices. In CHI Conference on Human Factors in Computing Systems 
(CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, 
USA, 18 pages. https://doi.org/10.1145/3491102.3501932 

1 INTRODUCTION 
With the recent impact and growth of felds like machine learning, 
people are increasingly trying to educate themselves about the latest 
advances of math-intensive felds [8]. At the same time, individual 
authors are rising to the challenge of making mathematical notation 
more understandable by building creative, sometimes high-profle 
annotations and augmentations to mathematical notation. In some 
cases, these authors produce stunning designs despite a lack of 
appropriate software support tools. 

Authors produce these designs to help their readers understand 
something about a formula that is hard to glean from the notation 
alone. Take the design in Figure 1, created by an author that was 
interviewed for this paper. This design embellishes a rendering 
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equation from computer graphics to help readers understand it. 
Expressions in the formula are colorized to help readers draw con-
nections between complementary representations of the same idea 
in notation, prose description, and diagrams. Why might an author 
show a formula in this way? In the words of this author: 

I guess I wrote it for [a younger] version of myself. . . so 
when I was in the uni years, if I had had this picture, it 
would have been so much easier for me to understand 
the whole concept, right? It took me a long time to un-
derstand this formula, or to fully understand it. And if 
I had had the supporting text with colors and a very 
simple way to explain it, it would have been nice. 

Although authors have been attempting to present notation in 
novel ways, they currently author these formulas using tools that 
are either inexpressive or difcult to use. The choices available 
to authors are math typesetting languages like LaTeX with prim-
itive support for visual design, or graphical editing tools with no 
built-in support for the structure of notation. Alternatively, authors 
could use one of an emerging set of mathematical animation tools 
like manim [52], which are capable of creating intricate formula 
animations, at the cost of a steep learning curve. 

This paper envisions a suite of future tools—next-generation 
markup languages, direct manipulation tools, and automated de-
sign assistants—that lower the threshold and widen the walls of 
authoring tools for math notation. To take a frst step towards this 
vision, this paper answers the questions: what is it that authors 
seek to achieve with novel visual designs of notation and what are 
the opportunities for future authoring tools to reduce the friction that 
authors experience with the current tools? 

To answer these questions, this paper presents an in-depth quali-
tative analysis of the practice of math augmentation, defned as the 
embellishment of notation with novel visual designs. First, after a 
discussion of related work (Section 2), an in-depth content analysis 
is presented, detailing the sorts of math augmentations (“maugs,” 
pronounced “mogs”) that authors created in 47 documents (Sec-
tion 3). Second, an interview study is presented with 12 authors of 
documents containing maugs (Section 4). 

The primary conclusion of these studies is that the practice of 
math augmentation is one that is tedious and yields highly divergent 
designs. Authors experienced friction working with clunky markup 
languages, ugly default designs, and tedious graphical editing tools. 
They desired tools that would help them break free from the limi-
tations of static media, allowing them to show details-on-demand 
and introduce formulas step-by-step. 

A secondary conclusion is that in order to meet authors where 
they are, tools must support the creation of a diverse complement 
of maugs. Sixteen kinds of maugs were identifed in four difer-
ent categories: embedded visualizations, text style, annotations 
(i.e., overlays and underlays), and interactivity. The most pervasive 
maug was color, where color was frequently used to establish visual 
links between expressions in formulas and nearby prose, notation, 
diagrams, and code listings. The second most pervasive maug was 
descriptive labels, which saw considerable diversity in the means 
by which they were visually associated with expressions. 

The primary contribution of this work is a set of eleven design 
recommendations for future notation authoring tools to support 

novel visual presentations, grounded in data from the content anal-
ysis and interviews (Section 5). These recommendations lay the 
groundwork for the design of the next LaTeX, Google Slides, and 
automated design assistants to enable the pervasive creation of 
understandable notation. 

2 RELATED WORK 
This section provides a contemporary account of how formulas 
might be augmented to infuence how they are read. Prior research 
and design tools are reviewed in the areas of math education, tech-
nical writing, visualization, and reading interfaces. 

2.1 Math notation 
2.1.1 The experience of reading math notation. Reading math nota-
tion is difcult. In the math education literature, symbols have been 
likened to a language with its own grammar and conventions [1]. 
Outside of formal learning settings, math terminology and notation 
have been reported as an impediment to learning about advanced 
technical topics like machine learning [8]. 

Empirical studies have shown that notation is cognitively de-
manding to read. While reading math texts, readers frequently shift 
their attention between formulas and the accompanying prose that 
describes them [36]. In a study by Österholm [46], readers per-
formed worse on a comprehension task when reading a math text 
with symbols, rather than a similar text containing solely prose. 
Notation is less approachable to those who have less experience 
reading and writing it. In an observational study of both student 
and expert mathematicians, Shepherd and Sande [57] observed dif-
ferences in how notation was read. Students might read formulas 
literally, one symbol at a time, and rely on the text for an interpre-
tation of its meaning. Expert readers, on the other hand, were able 
to identify idioms in formulas, for instance recognizing a distance 
computation as the square root of a diference of squares. 

When the visual presentation of a formula is altered, readers 
interpret it diferently. Changes to the symbols, spacing, and anno-
tations of a formula have all been shown to infuence how a formula 
is read. For instance, a reader’s expectations of the behavior of an 
operator, such as its commutativity, is infuenced by the operator 
symbol’s horizontal symmetry [61]. Spacing between operators 
and their operands can afect how readers interpret the order of 
operations [39]. The addition of marks such as colors, borders, and 
arrows can reduce the cognitive load involved in solving algebra 
problems [63]. Furthermore, the speed with which a formula can 
be read and later recognized is infuenced by whether a formula 
is well-formed or not, i.e., whether it adheres to the standards of 
what makes a structurally complete formula such as the presence 
of two operands for a binary operator [31]. 

2.1.2 Typeseting and augmenting math notation. Today, myriad 
tools have been designed to let authors typeset math notation 
cleanly and then to augment its appearance. Perhaps the most 
well-known tool is Knuth’s TeX program [35], and its extension, 
LaTeX. Built into the original TeX is an algorithm for automatically 
laying out formulas from an input markup language, and the ability 
to add custom spacing and apply boldface fonts. Subsequently, pack-
ages such as “color” [9] and “mathtools” [42] were developed by 
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the LaTeX community, enabling augmentations to formulas such 
as the addition of color and labels to formulas, respectively. 

As math instruction has increasingly appeared in hypertext and 
video formats, a new generation of typesetting languages has been 
developed. KaTeX [16] is an online port of the TeX formula typeset-
ting engine, capable of transforming formula markup into HTML at 
the time that a page loads. KaTeX implicitly supports a broad array 
of augmentations by allowing authors to use the full complement of 
CSS styles on arbitrary expressions. To help authors create interac-
tive formulas, among other types of interactive documents, Victor’s 
Tangle [60] lets authors create reactive formulas, where the values 
of expressions are computed from input widgets elsewhere on the 
page. To help authors create math videos, manim [52] provides a 
language for specifying gradual, animated builds of formulas. 

Within the HCI community, numerous designs have been pro-
posed to improve how notation is both read and written. Dragunov 
and Herlocker [15] put forward a vision of such tools, proposing 
functionality such as the ability to see defnitions of expressions 
on demand, and the ability to step through derivations at multiple 
levels of detail. Hohman et al. [23] gave a recent account of novel 
visual and interaction designs for math notation that appeared in 
their sample of interactive articles. This paper continues in the tra-
dition of these prior papers, providing a comprehensive inventory 
of the primitives of augmented notation and characterizing how 
augmented formulas are created today. 

Novel afordances for reading math notation have been incor-
porated into research prototypes. For instance, Head et al. [22] 
designed ScholarPhi, a reading interface for scientifc papers, that 
allowed readers to look up the defnition of symbols in tooltips and 
in equation diagrams overlaid on top of display equations. Alcock 
and Wilkinson [2] designed the e-Proofs system for presenting 
math proofs, wherein authors can fade in and out parts of a proof 
based on where they want to direct a reader’s attention, and draw 
arrows to help readers draw connections between related formulas 
and prose that appear far apart from each other. 

The HCI community has also designed systems to help write 
and manipulate math notation in a variety of forms. Among other 
features, these systems support the creation of formulas through in-
tegrated sketching and formula search [13], performing derivations 
on formulas using direct manipulation (e.g., pinching two expres-
sions together to add them) [64], and solving algebra problems with 
complementary symbolic and pictorial representations [32, 53]. 
These designs suggest a rich space of potential interactions that 
might help learners deeply engage with math notation. 

2.2 Augmented visualizations 
Notation is a visual representation of a mathematical idea, one that 
involves spatial arrangements of textual and symbolic characters. 
Prior research in visualization provides a vocabulary for describing 
the diferent augmentations that can be applied to formulas. For 
instance, borrowing terminology from Kong et al.’s study of visual 
cues, or markers that guide a viewer’s attention [37], cues can be 
“integral” in that they are incorporated into the underlying marks, 
or they can be “separable” in that the cues are distinct marks. Draw-
ing on the parlance from Hullman et al. [28], annotations can be 

“observational” by describing what a viewer can already see, or “ad-
ditive” by lending additional information for interpreting the visual. 
The augmentations in this paper are both integral (specifcally, em-
bedded visualizations, style, and interactivity augmentations) and 
separable (annotations). They are mostly additive, helping readers 
to understand the meaning of math expressions that is not evident 
from the surface representation of expression alone. 

Given the importance of cues and annotations in exposing the 
meaning of visualizations, the research community has designed 
tools that aid in their creation with automation (e.g., [7, 28, 58]), 
domain specifc languages (e.g., [17]), and direct manipulation in-
terfaces (e.g., [50, 55]). The purpose of this paper is to review the 
practice of math augmentation in order to inform the design of 
tools of each of these types for math notation. 

2.3 Augmented technical texts 
Math texts are but one type of technical text. Like math texts, 
technical texts more generally, such as scientifc articles, program-
ming tutorials, and data stories, all require readers to undertake 
the difcult task of integrating information from among multiple 
representations of complex technical ideas. 

Prior research in HCI outlines a rich set of interactions that could 
be brought to math texts to assist readers. For instance, readers 
could be aided in quickly navigating between visuals (e.g., tables 
and charts) and prose that describe the same data [4, 33, 38, 40, 41]. 
They could be given access to on-demand descriptions of unfamiliar 
notation [21, 22] and extreme quantities that are hard to visual-
ize [29]. They could be allowed to tinker with parameter choices for 
quantitative analyses within the document [14]. Given the burden 
that these interaction techniques place on authors to implement 
them, authoring tools have been proposed to aid in their imple-
mentation (e.g., [11, 40]). This paper provides evidence of which 
of the above features have analogs in the current practice of math 
augmentation, and which are desired by authors. 

3 STUDY 1. CONTENT ANALYSIS 

3.1 Motivation 
To understand the expressive potential that maug authoring tools 
should provide authors, we conducted a content analysis of 47 
documents containing maugs. A content analysis methodology is 
frequently used in studies of visual designs (cf. [34, 50, 54]). The 
purpose of this analysis was to elicit concrete, actionable, compre-
hensive guidelines for building tools that create the kinds of maugs 
that appear in existing documents. The analysis was designed to 
answer the following research questions: 

(1) What kinds of maugs are used to embellish notation? 
(2) What are the patterns of meaningful variation of each kind 

of maug? 
(3) Are multiple kinds of maugs used in the same formulas? 
(4) Are maugs applied mostly to simple expressions like identi-

fers, or are they also applied to more complex expressions? 

A description of the content analysis methodology follows. Ques-
tions 1 and 2 are answered in Section 3.3.3. Question 3 is answered 
in Section 3.3.1 and question 4 is answered in Section 3.3.2. 
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3.2 Methods 
3.2.1 Documents. A frst sample of documents was formed by 
selecting documents from the “Awesome mathematical notation 
design” [25] list that was published as companion material to the 
article Communicating with Interactive Articles [23]. Each document 
exhibited interesting notation design, or reviewed other documents 
that did. The collection was iteratively expanded following a snow-
ball sampling approach: each document was reviewed to identify 
references to other documents that contained augmented notation. 
This process was repeated until no new documents were identifed. 
Documents that did not contribute novel designs (i.e., those that 
merely reviewed the practices in other documents) were removed. 
The sample was then supplemented with 10 research presentations 
from recent machine learning publications. 

The fnal sample consisted of 47 documents, including 15 web 
articles, 10 research presentations, 6 chapters from textbooks, 3 
Twitter conversations, 3 research papers, 2 Distill articles, 2 videos, 
1 lecture presentation, 1 lecture handout, and 4 other documents. 
Throughout Section 3.3.3, documents exhibiting patterns of math 
augmentation are referred to by a unique ID, comprised of a letter 
prefx and a numeric index. For instance, “B3” is the third (“3”) book 
chapter (“B”) that was analyzed. A listing of documents, their IDs, 
titles, and URLs appears in Tables 2 and 3 of the appendix. 

3.2.2 Units. The unit of analysis in this study was one augmented 
formula, or a formula that was visually altered or marked with the 
intention of altering how the formula was found, noticed, viewed, 
read, or understood. Only display formulas, i.e., those that visually 
stood apart from the prose, fgures, and tables, were considered. 
Hand-sketched formulas were excluded. 

The frst and second author independently extracted formulas 
from all documents. The coefcient of reliability was 80.4%, as 
measured using a metric from Holsti’s text on content analysis [26, 
p.140]. The two authors reviewed the diferences and corrected 
oversights independently. Remaining diferences were resolved 
through discussion, resulting in 279 formulas. Several formulas 
were added and removed during the analysis when oversights were 
noticed, bringing the total number of formulas to 281. 

3.2.3 Analysis. A taxonomy of maugs was developed iteratively 
by the frst and second authors on a superset of documents from 
the sample which contained additional research presentations. An 
annotation guide was developed with rules for identifying each 
kind of maug. This guide was revised for clarity as two prospective 
coders used the guide during training exercises. 

Two coders—the frst author and another coder—analyzed all 
formulas according to the guide. Each formula was analyzed for 
43 dimensions: 16 dimensions assessing the presence of each kind 
of maug; 6 counting which types of expressions were augmented 
(e.g., identifers vs. numbers vs. others); 9 analyzing label design; 9 
analyzing the use of color as a visual link between formulas and 
other content; 1 analyzing the use of arrows to connect formulas 
to other content; and 2 dimensions not described in this paper. 

Analysis took approximately 50 hours per coder. Each coder 
made approximately 8k judgments (≈ 281 formulas × 43 dimen-
sions, minus many dimensions that did not need to be considered 
as the absence of one dimension meant that another dimension did 

label

scrubbable

font color spacing external control

extent marker

Figure 2: A formula and the kinds of maugs found within it. 
Shown are two formulas: one that uses symbolic notation (above, 
highlighted in gray), and a second formula consisting of a sum 
of function curves (below). The callouts (e.g., “label,” “font color,”) 
reveal the kinds of maugs that were found in the frst formula 
during analysis. This formula appeared in [18] (CC BY 2.0). 

not need to be coded). Krippendorf’s α was used to measure inter-
rater reliability after the frst pass. The median level of agreement 
per dimension was .69, with broad variance (σ = .32, max = 1, 
min = −0.026). This revealed systematic disagreements about sev-
eral dimensions that required resolution. The coders resolved dis-
agreements through extensive discussions. A spreadsheet of the 
complete analysis results appears in the supplemental material. 

Worked example. The following walkthrough demonstrates the 
analysis of a single formula that appeared in Document D1 (see 
Tables 2 and 3 for information about the document). The formula 
was analyzed as containing six kinds of maugs (see Figure 2). 

• Font color, appearing when an expression is hovered over. 
• Extent markers (here, underlines) beneath each addend. 
• One label, reading “scrub values,” above the frst addend. The 

label contains one phrase, no visuals, and no notation. 
• Spacing around each operator, presumably to align each 

addend to a function curve in the formula below it. 
• Scrubbing interactions, where a reader can click and drag on 

an addend to change the value of its coefcient. 
• External controls, where a reader can change the values of all 

coefcients at once by clicking and dragging points in the 
function curve beneath the “model” expression. 

The formula was determined to contain 25 maugs total, belong-
ing to the six kinds described above. To arrive at this total, the 
following maugs were counted: 

• 1 label that augments a numeric literal (“-2.00”). 
• 24 maugs across the 6 addends (i.e., the “−2.00pk ” expres-

sions), of 4 kinds: extent markers, font colors, scrubbing 
interactions, and external controls. 

Spaces were not included in counts for any formulas due to 
numerous ambiguities about what could be counted as one unit of 
irregular spacing. For instance, for the formula above, the space 
around a “+” sign could be interpreted as one space (i.e., as padding 
around the “+”), or up to 4 spaces (one on both sides of the “+”, and 
one on the side of each expression adjacent to the “+”). 
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identifier operatorexpression numeric literal

FORMULA[

y = mx + 1

Figure 3: Levels of granularity at which augmentations were 
counted: identifers, operators, numeric literals, other expressions 
apart from the aforementioned types, and entire formulas. 

3.3 Results 
This section begins with answers to research questions 3 and 4, and 
concludes with a detailed inventory of the kinds of maugs found in 
documents (research questions 1 and 2). 

3.3.1 Number of Augmentations. When counting maugs, we con-
sidered 1 maug to be the application of one kind of maug (e.g., font 
color) to one expression (e.g., an identifer like “x”). Thus, a formula 
containing 3 colorized identifers would have 3 maugs. 

Across all 281 formulas, 1,182 maugs were counted. Thus, formu-
las had an average of 4.2 maugs. The median number of maugs per 
formula was 3 maugs. The number of maugs in any one formula 
varied greatly (σ = 5.2, max = 40). 

Approximately half of formulas featured only one kind of maug. 
The remaining half (47.7%) were augmented with two or more 
maugs. The most frequent pairs of kinds of maugs were labels with 
spacing, and labels with extent markers. 

3.3.2 Granularity of Augmented Expressions. Each maug was ana-
lyzed as applying to one of fve diferent types of expressions (see 
a visual reference in Figure 3): 

• Identifers: names of mathematical variables or functions, 
such as “x ,” “yi ”, or “sin.” 

• Operators: symbols representing mathematical operations, 
such as “+” or the “Σ” summation operator. 

• Numeric literals: numbers, consisting of sequences of digits 
with optional separators, such as “10,000” or “3.14.” 

• Formulas: an entire formula. 
• Other expressions: An expression that is neither the entire 

formula, nor one of the other types of expressions above. 
A minority of maugs applied to identifers (31.4%). An even 

smaller minority applied to numeric literals (6.3%), operators (3.3%), 
and entire formulas (9.1%). Nearly half of augmentations applied 
to other expressions (49.9%). This category included function calls, 
operations involving an operator and multiple operands, named 
constants, and embedded visualizations. 

When a formula was augmented, it was frequently the case that 
some expressions were left unaugmented. For instance, in 68.1% of 
the formulas where at least one identifer was augmented, at least 
one other identifer was not augmented at all. 

3.3.3 An Inventory of Maugs. Formulas were augmented with 16 
kinds of maugs, which are grouped into 4 high-level categories. 
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Table 1: Summary of results. Each row reveals which kinds of 
maugs appeared in each document. Documents (rows) are grouped 
by type, and indexed by a document ID. A mapping from document 
IDs to titles and URLs can be found in Tables 2 and 3. Kinds of 
maugs (columns) are grouped by category. Several trends manifest 
in this table. For instance, it can be seen that font color is used fre-
quently across all types of documents. Interactivity is used mainly 
in documents hosted as interactive web pages (e.g., web articles, 
book chapter B3, and Distill articles). 
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Figure 4: A visual overview of the kinds of maugs observed in the content analysis. Sixteen kinds of maugs were observed, belonging 
to the categories of visual notation, style, annotation, and interactivity. 

These categories roughly correspond to Hullman and Diakopoulous’ 
“editorial layers” of narrative visualizations (i.e., data, visual repre-
sentation of data, annotation, and interaction [27]): 

• Visual notation maugs are those where an expression is en-
tirely replaced with a visualization such as a chart or shape. 

• Style maugs are those that afect the appearance of text, like 
the color of symbols and the space between them. 

• Annotation maugs are marks are overlaid atop or underlaid 
beneath a formula. 

• Interactivity maugs are those that allow expressions to be 
modifed interactively via user input. 

A visual overview of the kinds of maugs appears in Figure 4. 
Below, we introduce the kinds of maugs one category at a time. 
Each kind of maug is described with a name, the percentage of 
documents in which it was found (e.g., “6.4%”), an example of its 
use, and patterns of variation in how it was applied to formulas. 

Visual notation. Visual notation maugs are visualizations used 
as expressions. Two kinds of visual notation were observed. 

First, formulas could contain geometric objects, or shapes such as 
lines, angles, or circles, as expressions. Geometric objects appeared 
in 6.4% of documents. They were used in warrants or assertions in 
visual proofs (B3 (Figure 5A), W6), and other times as mathematical 
variables where the shape itself conveyed no meaning but rather 
served as a unique identifer (W14 (Figure 5B)). 

Second, formulas could contain data visualizations as expressions 
(8.5% of documents). Data visualizations appeared in formulas repre-
senting computations, such as additions, or distance computations, 

where the visualizations stood in as example inputs to those com-
putations. Visualizations could be of many kinds, including graphs 
(D1, S10 (Figure 5C)), images (S8), and pixel colors (W8). 

Style. Style maugs afect the format and placement of textual ex-
pressions (i.e., Roman symbols, numbers, and combinations thereof). 

Font color was the most pervasive kind of maug. It entailed mod-
ifying the color of one or more characters in a formula (W14 (Fig-
ure 6A)). Font color was altered in nearly half of formulas (41.6%), 
and in at least one formula in most documents (70.2%). 

All formulas were analyzed to determine whether color aug-
mentations (i.e., font color, background color, and colorized extent 
markers and borders) provided a visual link, or a cue suggesting a 
relationship between an expression and other content. For instance, 
an expression “f (x)” could be colorized green, and the graphical 
representation of the function f (x) in a nearby graph could also be 
assigned the color green (see an example in Figure 11). 

According to our analysis, most (70.2%) documents used color at 
least once to establish visual links. Visual links related expressions 
to both similar (40.4%) and identical (29.8%) expressions in other 
formulas; to prose (36.2%); to marks (34.0%) and labels (23.4%) in 
visualizations; and to code in source code listings (6.4%). 

A related kind of maug was font brightness or opacity. This maug 
could be used to make some expressions more salient by making 
them easier to see than those surrounding them (D1, Figure 6B). 
Font brightness was altered in 8.5% of documents. 

Space augmentation is the practice of positioning expressions in 
a formula in a way that would not be done by default by a math 
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Here is a quick list of some basic rules for rewriting sums, products, and derivatives that you can
quickly review to make sure they are familiar. Here,   and   stand for any expression you like, and
remember, multiplication   is not normally written explicitly, it is implied when two expressions are
next to each other, but we will use   here to be clearer.

1. Differentiating a sum:

it to the name of a corollary.

A Lemma is a propoſition merely introduced for the
purpoſe of eſtablishing ſome more important propoſition.

O
PROPOSITION I. PROBLEM.

N a given �nite ſtraight line ( ) to
deſcribe an equilateral triangle.

Deſcribe  and  (poſtulate �.); draw 

and  (poſt. �.). then  will be equilateral.

and therefore  is the equilateral triangle required.

Q. E. D.

For  =  (def. ��.);
and  =  (def. ��.),
∴   =  (axiom. �.);

F
PROPOSITION II. PROBLEM.

ROM a given point ( ), to draw a
ſtraight line equal to a given �nite ſtraight
line ( )

Draw  (poſt. �.), deſcribe  (pr. �.), produce 

 (poſt. �.), deſcribe  (poſt. �.), and 

(poſt. �.); produce  (poſt. �.), then  is the
line required.
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Figure 5: Visual notation. The formulas above exhibit the use of geometric objects in assertions of a visual proof (A, from [51] (CC BY-SA 
4.0)); shapes as mathematical variables (B, from [6]); and data visualizations as operands in mathematical computations (C, from [20]). 

So just what is reverse-mode automatic differentiation (RAD)? The core idea is fairly simple: it is a recipe for computing gradients of a large,
complex function composed of simpler functions by computing gradients for the simpler functions that it is composed of.

Note: the reason we use the term "reverse-mode" is that the order in which we compute the gradients is reversed from the order
we compute the output, but this will become more obvious later.

Note: We think of these smaller functions as taking vectors (often written as ) as inputs and producing vectors (often written )
as outputs. Sometimes  and  are arrays with more dimensions, like images, but we'll ignore this for now (if you're curious, we
effectively treat them as vectors for the purposes of automatic differentiation).

Roadmap

The structure of our practical will then be the following:

1. Build intuition about stochastic gradient descent and gradient vectors
2. Learn how backpropogation uses the compositional/layered structure of a neural network to compute its gradients
3. Implement our own layers, which will contain their own backpropogation code
4. Implement our own training loop that uses backpropogation to train a network using SGD
5. Put it all together to train a network to solve the MNIST task

What are gradient vectors?

Note: feel free to skip this if you already understand what a gradient vector represents.

Let's start with a scalar function , which maps the input  to the output :

Here,  could be a polynomial, exponential, or whatever your favorite kind of mathematical function is.

Let's now approximate the function  around a particular point  with a straight-line function :

As the picture above shows, we can use the derivative  to construct the best linear approximation to a function  around a speci�c

point . Speci�cally, the derivative gives us the slope. If the function above was horizontal at , you can see that the gradient  would
be zero.

Notice the crucial fact that the gradient  points in the direction in which  increases at , and the magnitude tells us how quickly it
increases. Here, the gradient is positive, which tells us the function is increasing to the right, and the large magnitdue tells us it is increasing
relatively fast.

Exercise: does the gradient always point in the direction of the nearest maximum of a function? If not, can you provide an example of a point 
on a simple function for which the gradient  does not point toward the nearest maximum of ?

Think of this restriction as a “speed of light” of information transfer. Error signals will take at least k steps to move from w  to w .

We can therefore sum up the errors which cannot have changed yet9:

As n gets large, the condition number of f  approaches κ. And the gap therefore closes; the convergence rate that momentum
promises matches the best any linear first order algorithm can do. And we arrive at the disappointing conclusion that on this
problem, we cannot do better.

Like many such lower bounds, this result must not be taken literally, but spiritually. It, perhaps, gives a sense of closure and finality
to our investigation. But this is not the final word on first order optimization. This lower bound does not preclude the possibility, for
example, of reformulating the problem to change the condition number itself! There is still much room for speedups, if you
understand the right places to look.

Momentum with Stochastic Gradients

There is a final point worth addressing. All the discussion above assumes access to the true gradient — a luxury seldom afforded in
modern machine learning. Computing the exact gradient requires a full pass over all the data, the cost of which can be prohibitively
expensive. Instead, randomized approximations of the gradient, like minibatch sampling, are often used as a plug-in replacement of 
∇f(w). We can write the approximation in two parts,

It is helpful to think of our approximate gradient as the injection of a special kind of noise into our iteration. And using the
machinery developed in the previous sections, we can deal with this extra term directly. On a quadratic, the error term cleaves

cleanly into a separate term, where 10

The error term, ϵ , with its dependence on the w , is a fairly hairy object. Following , we model this as independent 0-mean
Gaussian noise. In this simplified model, the objective also breaks into two separable components, a sum of a deterministic error

and a stochastic error 11, visualized here.
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This effect is harnessed with the heuristic of early stopping : by stopping the optimization early, you can often get better generalizing
results. Indeed, the effect of early stopping is very similar to that of more conventional methods of regularization, such as Tikhonov
Regression. Both methods try to suppress the components of the smallest eigenvalues directly, though they employ different

methods of spectral decay.2 But early stopping has a distinct advantage. Once the step-size is chosen, there are no regularization
parameters to fiddle with. Indeed, in the course of a single optimization, we have the entire family of models, from underfitted to
overfitted, at our disposal. This gift, it seems, doesn’t come at a price. A beautiful free lunch  indeed.

The Dynamics of Momentum

Let’s turn our attention back to momentum. Recall that the momentum update is

Since ∇f(w ) = Aw − b, the update on the quadratic is

Following , we go through the same motions, with the change of basis x = Q(w − w ) and y = Qz , to yield the update
rule

in which each component acts independently of the other components (though x  and y  are coupled). This lets us rewrite our

iterates as 3

= R R = .

There are many ways of taking a matrix to the k  power. But for the 2 × 2 case there is an elegant and little known formula  in
terms of the eigenvalues of R, σ  and σ .

R = , R =

This formula is rather complicated, but the takeaway here is that it plays the exact same role the individual convergence rates, 
1 − αλ  do in gradient descent. But instead of one geometric series, we have two coupled series, which may have real or complex

values. The convergence rate is therefore the slowest of the two rates, max{∣σ ∣, ∣σ ∣} 4. By plotting this out, we see there are
distinct regions of the parameter space which reveal a rich taxonomy of convergence behavior :
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The above analysis gives us immediate guidance as to how to set a step-size α. In order to converge, each ∣1 − αλ ∣ must be strictly
less than 1. All workable step-sizes, therefore, fall in the interval

0 < αλ < 2.

The overall convergence rate is determined by the slowest error component, which must be either λ  or λ :

This overall rate is minimized when the rates for λ  and λ  are the same — this mirrors our informal observation in the previous
section that the optimal step-size causes the first and last eigenvectors to converge at the same rate. If we work this through we get:

Notice the ratio λ /λ  determines the convergence rate of the problem. In fact, this ratio appears often enough that we give it a
name, and a symbol — the condition number.

condition number := κ :=

The condition number means many things. It is a measure of how close to singular a matrix is. It is a measure of how robust A b is
to perturbations in b. And, in this context, the condition number gives us a measure of how poorly gradient descent will perform. A
ratio of κ = 1 is ideal, giving convergence in one step (of course, the function is trivial). Unfortunately the larger the ratio, the
slower gradient descent will be. The condition number is therefore a direct measure of pathological curvature.

Example: Polynomial Regression

The above analysis reveals an insight: all errors are not made equal. Indeed, there are different kinds of errors, n to be exact, one for
each of the eigenvectors of A. And gradient descent is better at correcting some kinds of errors than others. But what do the
eigenvectors of A mean? Surprisingly, in many applications they admit a very concrete interpretation.

Lets see how this plays out in polynomial regression. Given 1D data, ξ , our problem is to fit the model

model(ξ) = w p (ξ) + ⋯ + w p (ξ) p = ξ ↦ ξ

to our observations, d . This model, though nonlinear in the input ξ, is linear in the weights, and therefore we can write the model as
a linear combination of monomials, like:
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Figure 6: Style augmentations. The formulas above show how expression can be augmented with colorized text (A, from [6]), changes to 
font brightness / opacity (B, from [18]), and irregular spacing (C-F). Space can be used to group symbols into expressions (C, from [18]), align 
expressions from adjacent formulas (E, from [18]), and arrange expressions in grids (F, from [48]). Sometimes, space between expressions 
appears to be an unintentional artifact of the authoring tool (D, from [47]). 

typesetting engine. Space augmentation was quite common, occur-
ring in 29.8% of documents. Space infuenced the appearance of 
formulas in a few ways. First, it grouped expressions into compo-
nents representing meaningful concepts, like “decaying sum of the 
errors” (D1 (Figure 6C), D2). Second, it aligned related expressions 
in neighboring formulas (D1 (Figure 6E), V1). Third, it was used 
to convey the gestalt of complex computations. For instance, in a 
formula from W8 (Figure 6F), products of pixel and flter values 
were arranged in a 3 × 3 grid to let a reader perceive the pixels as a 
cropped segment of the image they came from. 

Not all spacing was intentional. Occasionally, formulas contained 
unexpected spacing on the sides of expressions, often coinciding 
with the use of labels (e.g., S2 (Figure 6D)). As one of our inter-
views confrmed, tools for adding labels sometimes introduce un-
wanted space. For instance, the extra space in Figure 6D can be 
explained by the potentially undesirable default behavior of La-
TeX’s “\underbrace” macro, which pads expressions with horizon-
tal space to accommodate labels that appear beneath them. 

Annotation. Annotation maugs introduce visual marks on top 
of, or underneath, the text of a formula. Some annotation maugs 
exhibited little variation, so they are described briefy here before 
discussing the more complex annotation maugs: 

Background color (appearing in 12.8% of documents): the use 
of color to saturate an otherwise blank background behind an ex-
pression. Background colors were used to draw focus to important 

expressions in a way that is reminiscent of the use of font colors 
(B5, W15 (Figure 7A)). Background colors were also used to draw 
attention to entire formulas (e.g., W13). 

Borders (23.4%): containers drawn around expressions. Borders 
were most frequently drawn around entire formulas (e.g., B4, V2), 
although on occasion they marked individual expressions (V1 (Fig-
ure 7B)). In a few cases, borders were a side efect of a formula 
appearing in an HTML input box (W6, W12). 

Extent markers (29.8%): lines or braces in the margins of a formula 
along the length of an expression of interest. Extent markers often 
appeared together with labels (i.e., in 90.0% of formulas in which 
they appeared), connecting labels to the expressions they described. 
Extent markers were used in 2 formulas to mark an expression that 
had been expanded during a derivation (D2 (Figure 7C)). 

Strikethroughs (6.4%): marks that cross out an expression to sug-
gest the expression has been eliminated from a formula. Marks used 
for strikethroughs include slashes (N1, V1 (Figure 7D)) and crosses 
(V2), and they were colored both red (V1, V2) and black (N1). 

Pointer arrows (2.1%): arrows that point to an expression. Pointer 
arrows were rare, appearing in only one formula (S7 (Figure 7E)). 

Two other kinds of annotation maugs stood out has having 
particularly intricate design spaces. The frst was connector arrows, 
arrows that visually linked formulas to other content in a document. 
Connector arrows appeared in 17.0% of documents. They connected 
formulas to other formulas they were derived from (W3 (Figure 7G)), 
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Trig functions really are just exponential functions!

The cool thing we saw at the beginning was that trig functions have this very close relationship to ex-
ponential functions! If we add together sine and cosine, and do some finagling, we get an exponential
function! Let’s make that connection a little bit more clear. Ultimately, we’ll come up with an equation
for sine and cosine, one that isn’t infinitely-long, and doesn’t involve triangles or unit circles. And that’ll
be pretty cool.

You may recall that in one of our earlier problem sets, we came up with a formula for the real part of
an imaginary number:

z + z

2
=

(a + bi) + (a + bi)

2

=
(a + bi) + (a � bi)

2

=
2a +��bi ���bi

2

=
2a

a
= a

= Re(z)

= the real part of z

We also came up with a formula for the imaginary part:

z � z

2i
=

(a + bi) � (a + bi)

2i

=
(a + bi) � (a � bi)

2i

= �a + bi � �a + bi

2i

=
2bi

2i
= b

= Im(z)

= the imaginary part of z

Many of you objected, quite reasonably, that the formulas seem useless and overly complicated, since if we
have a complex number written in a + bi form, we know its real and imaginary parts are just a and b—we
don’t need a fancy formula. Indeed! But, since then, we’ve seen di↵erent ways of writing and describing
complex numbers, that might not be so explicit about what the real and imaginary parts are. For example,
consider this complex number:

z = 5e2i⇡/3

It’s a lovely complex number, with radius 5 and angle 2⇡/3. But what if we want to know its real and
imaginary parts (i.e., its x and y components)? One way to figure them out would be to use trig functions:

Re(z) = 5 cos(2⇡/3) = 5 · �1

2

Im(z) = 5 sin(2⇡/3) = 5 · 1p
3

4

B

C

D

F G

Figure 7: Annotations (excluding label maugs). The formulas above demonstrate augmentation using background colors (A, from [30]), 
borders (B, from [45]), extent markers (C, from [19] (CC BY 4.0)), strikethroughs (D, from [3]), pointer arrows (E, from [43]), and connector 
arrows (F, G). Connector arrows need not be unadorned black arrows; the examples here show the use of color (F, from [44]) and labels (G, 
from [10]) to bring additional meaning to connectors. 

text descriptions (V1), and marks in visualizations (S6, (Figure 7F)). 
Connector arrows could be annotated with labels, and those labels 
could even contain other formulas (see Figure 7G). Arrows could 
be colored the same color as the content they connected to (see 
Figure 7F). A formula could have multiple incoming or outgoing 
connector arrows, and arrows could connect either to the edges of 
formulas, or expressions in them (W3). 

The second type of annotation maug that had an intricate design 
space was the label. Labels are foating descriptions of expressions. 
Labels were very common: over 300 labels were counted across 
all 281 formulas. Labels appeared in 48.9% of documents. Labeled 
formulas had an average of 3.3 text labels (σ = 2.9, max = 13), and 
documents had an average of 6.3 text labels total. 

Labels contained myriad types of descriptive content. Most often, 
they contained text descriptions. In fact, 294 labels contained text. 
Text was typically short: 75.9% of text labels contained only one 
phrase, while 6.8% contained complete sentences, and the remainder 
contained text that was neither a phrase nor a sentence, such as 
multiple sentences, or notation unaccompanied by textual words. 
Beyond text, labels contained other types of content: 48 labels in 14 
documents contained math notation, and 36 labels in 4 documents 
included visuals, such as iconography (D2 (Figure 8B)). 

Labels were visually associated with expressions in one of three 
ways: proximity (D1, D2 (Figure 8A)), extent markers (V1 (Fig-
ure 8C)), or leader lines. Of the formulas that had labels, 30.0% used 
extent markers, 45.6% used leader lines, and 8.9% used both. 

Although it was rare, sometimes multiple labels applied to a 
single expression (see “ρ” in Figure 8C). Other times, a single label 
was linked to multiple expressions (W3, W13, W15). Labels could be 
hierarchical, describing both large expressions and the smaller ex-
pressions of which they were composed (Figure 8C). In some cases, 
labels annotated other labels, rather than expressions, clarifying a 
description that appeared in another label (B1, T3, W3). 

A handful of documents exhibited a pattern we call pseudo-
labels, where expressions are colorized in a way that relates them 

to phrases in a nearby foating descriptive sentence (B2, B5 (Fig-
ure 8D), O1, W4, W5, W7). This pattern bears a strong resemblance 
to the use of labels, and its wide usage implies the utility of tools 
that could help authors create maugs of this kind. 

Interactivity. Interactivity maugs alter the appearance and con-
tents of a formula upon user interaction. Because interactivity 
requires a document to be published in a dynamic medium, only 
a handful of documents exhibited interactivity (see Table 1). Four 
kinds of interactivity maugs were observed: 

Scrubbable expressions (appearing in 2.1% of documents, i.e., 1 
document): Expressions that readers can click and drag to change 
their value (D1 (Figure 6E)). 

Editable text felds (2.1%): expressions that can be edited by chang-
ing a value in an input text feld (W6). 

Linked selections (4.3%): a reader selects or hovers over an expres-
sion, which triggers content to be highlighted or selected elsewhere 
in the document. For instance, in the excerpt from B3 in Figure 5A, 
when a reader clicks a colored line in a defnition or axiom formula, 
the matching line in the adjacent diagram is highlighted. 

External controls (8.5%): expressions that can be controlled using 
input widgets that appear outside of the formula. External controls 
infuenced expressions in three ways. First, they directly set values 
of expression. Second, they limited the values that can be assigned to 
other expressions by other controls. Third, they set hidden variables 
used in computations of expression values. We encourage the reader 
to visit document W2, which exhibits all three patterns of control. 
Input widgets included sliders (D1, W2), drop-down menus (W8), 
and visualizations with scrubbable points and curves (D1, O4) and 
content that could be selected by hovering over it (W8). 

4 STUDY 2. INTERVIEWS 
To understand how tools could help authors create maugs, we 
conducted an interview study with authors who had previously 
designed custom maugs. 
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Figure 8: Labels. The formulas above hint at the broad design space of labels. For instance, labels can be associated with expressions using 
adjacency (A, B, from from [19]), extent markers (C, from [45]), or leader lines. Labels can contain text phrases (A, C), visuals (B), or other 
types of content. Labels can describe overlapping expressions (C). Also shown is an instance of “pseudo-labels,” where a formula is colorized 
in a way that relates expressions to phrases that describe them in a nearby foating sentence (D, from [49]). 

4.1 Methods 
4.1.1 Participants. From among the documents analyzed in the 
content analysis (Section 3.2.1), the frst author of this paper iden-
tifed a subset of documents containing particularly elaborate or 
intriguing augmentations. The authors who created these docu-
ments were invited to participate in an interview. Twenty authors 
were contacted, of whom twelve chose to participate. Authors were 
highly educated. All held a Bachelor’s degree, and six (half) held 
Ph.D.s. They were employed as research scientists, software devel-
opers, designers, engineering managers, and myriad other occu-
pations. Despite the educational content of many of their designs, 
only two were formally employed as educators. The maugs they 
had created had appeared in web articles, book chapters, research 
papers, and several other document formats. 

4.1.2 Protocol. The frst author conducted all interviews. First, the 
interviewer obtained the participant’s informed consent. Then, he 
asked the participant to describe their occupation and level of educa-
tion. Then, he opened up a document the participant had authored 
and directed their attention to one of the augmented formulas. The 
participant was then engaged in a conversation about how that 
formula was created, touching upon the following questions (which 
are paraphrased here for brevity): 

• Why did you present the formula in this way? 
• How did you create the augmented formula? 
• What aspects of the process of creating this augmented for-

mula felt clunky? 
• How else would you want to augment the formula if you did 

not have to do all the work to make it so? 

All interviews were held remotely using the Zoom video confer-
encing software. Interviews lasted 30 minutes. If 30 minutes had 
passed and the interviewer had questions remaining, he invited the 
participant to a follow-up session. Five follow-up interviews were 
held, each between 15 and 45 minutes in duration. Audio recordings 
were collected for all interviews. 

4.1.3 Analysis. Transcripts were made from the audio recordings. 
They were analyzed to identify participants’ goals, processes, and 
challenges. The frst author developed an initial set of themes by 
reviewing his personal notes from each interview. Then, he re-
viewed all transcripts, and further expanded and refned the set of 
themes. All excerpts that refected each theme were pulled into a 

spreadsheet. The third author helped refne the themes by review-
ing all excerpts, determining whether they appeared to represent 
the themes, and proposing revisions. The fnal analysis that ap-
pears in this paper was agreed upon between the two authors as 
representative of the themes. 

4.1.4 Confidentiality. In the analysis below, authors are referred 
to by pseudonyms A1–12. Utterances and anecdotes have generally 
been edited to remove details that could identify either the author or 
the document they wrote. In some cases where we felt that specifc 
document excerpts and identifable utterances brought richness to 
the discussion, we obtained authors’ express permission to include 
those excerpts and utterances. Document excerpts appear with a 
citation to the original source. 

4.2 Results 
This section begins by reviewing authors’ goals in creating maugs 
and their authoring process, and then discusses the key topic of the 
section—the challenges authors face when creating maugs. When a 
theme represents the experience of more than one author, a number 
appears in parentheses indicating how many interviews support 
that theme (i.e., “(4)” means “four authors”). 

4.2.1 Goals. Authors feared that without scafolding, readers would 
be too intimidated to attempt to understand notation. They de-
scribed notation as something that readers would fnd “scary,” “dense,” 
“not that friendly,” “boring,” “big,” “hard to read,” and that notation 
could “intimidate” and “turn of” readers, or lead them to “freak” or 
“nope out” (5). Perhaps this was because authors were often writing 
for audiences who might self-identify as non-mathematical, such 
as social scientists or qualitative geoscientists (3). 

One of the roles that maugs played was to help readers focus 
on the important parts of big, dense formulas. Authors described 
this as “breaking up,” “down,” or “out” formulas (3) into “pieces” 
(3). For instance, A1 described how color could be used to help a 
reader understand that a formula really includes only a few key 
conceptual components (see the formula in Figure 9): 

But I think color, when mixed with the right notation, 
can help just give a very quick sense . . . you can know 
here, there’s really just two [things], and zoom in on 
those two things. So it’s. . . it’s like someone has a towel 
and is wiping your forehead when you’re sweaty. . . it’s 
like, “this is going to be really hard,” they’re like, “no, 
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users place on having global understanding versus a purely
local understanding of a model.

GAMs are a generalization of linear models. To illustrate
the di�erence, consider a dataset D = {(xi,�i )}N of N data
points, where xi = (xi1,xi2, . . . ,xiM ) is a feature vector with
M features, and�i is the target, i.e., the response, variable. Let
x j denote the jth variable in feature space. A typical linear
regression model can then be expressed mathematically as:

� = �0 + �1x1 + �2x2 + · · · + �NxN

This model assumes that the relationships between the
target variable �i and features x j are linear and can be cap-
tured in slope terms �1, �2, . . . , �N . If we instead assume that
the relationship between the target variable and features is
smooth, we can write the equation for a GAM [24]:

� = �0 + f1(x1) + f2(x2) + · · · + fN (xN )
Notice here that the previous slope terms �1, �2, . . . , �N

have been replaced by smooth, shape functions fj . In both
models �0 is the model intercept, and the relationship be-
tween the target variable and the features is still additive;
however, each feature now is described by one shape func-
tion fj that can be nonlinear and complex (e.g., concave,
convex, or “bendy”) [28].

Since each feature’s contribution to the �nal prediction can
be understood by inspecting the shape functions fj , GAMs
are considered intelligible [10]. In this paper, we omit the
details of how to train GAMs, mean center shape functions,
and distinguish their regression and classi�cation versions,
which are covered in the literature [39, 40, 57, 64]. We also
note that GAM shape function charts di�er from partial de-
pendency (PD) [17] used in [36, 50]. PD assumes that features
are uncorrelated, and PD averages over the other features not
included in the chart. Therefore, PD only captures the e�ect
of modifying one feature independent of the others, whereas
GAM shape function charts, which are trained in parallel, are
e�ectively the entire model—predictions are made by sum-
ming values from all charts together and take into account
correlation among features to prevent multiple counting of
evidence. All together, this makes GAMs uniquely suited as
a model that maximizes our previous criteria and ties global
and local explanations closely together.

4 GAMUT
Given the capabilities described in section 3, we present
G����, an interactive visualization system that tightly in-
tegrates three coordinated views to support exploration of
GAMs (Figure 1): the Shape Curve View (A); the Instance
Explanation View (B); and the Interactive Table (C). To ex-
plain these views, we use an example real-estate model that
uses a house’s features to predict its sale price in US dollars.
The three views show di�erent aspects of a user-selected

instance, in this case a chosen house. Throughout the de-
scription we link features to the capabilities (C1)–(C6) that
the features support.

Shape Curve View
The Shape Curve View displays each feature’s shape function
as a line chart (Figure 1A). The user can choose which fea-
tures are displayed through the Feature Sidebar (Figure 2A):
an ordered list the features of the data, sorted by importance
to the model (C6). We will �rst describe the encoding for
one shape function chart. Consider the OverallQual feature
and its shape function chart (Figure 2B). This chart shows
the impact that the OverallQual feature has on the overall
model predictions (C6). The x-axis is the dimension of the
feature, in this case, a rating of the house’s overall material
and �nish quality, between 2 and 10; the y-axis is the con-
tribution of the feature to the output of a prediction, in this
case, US dollars. The chart shows that having a rating of 9
adds $50,000 to the predicted price, for example. Below the
x-axis is a histogram of the data density for the dimension.
This is useful for determining how many data points exists
in a particular part of feature space (C5), e.g., in Figure 2B,
we see that most houses have a OverallQual of 5 to 8.

The selected instance’s speci�c feature values are shown
as amber points on the shape function charts (C1). A data
instance has one value for every feature, i.e., one amber
point on each shape function chart, which shows where the
selected instance is located in the global model (C5). The
color of the line for each shape function encodes the �nal
predicted value if we were to vary the selected amber point’s
value to all other possible values. This is reinforced when
a user brushes over a line chart: a new point, colored by its
�nal prediction, is shown on the shape function curve, while
projected crosshairs track with the mouse cursor, enabling
users to ask interactive counterfactuals for any feature (C3).

Since the Shape Curve View shows multiple shape func-
tion charts at once, we provide a Normalize toggle for accu-
rate comparison. Turning Normalize on plots all the shape
functions on a common scale, allowing visual comparison of
the features’ di�erent degrees of impact on the predictions.
Charts with high slopes indicate more impact on predictions,
whereas charts with relatively �at lines contribute only a
little (C6). Turning o� Normalize plots each chart on its own
scale, emphasizing the shape of low-impact (�at) features.

Instance Explanation View
The Instance Explanation View shows a visualization of indi-
vidual instance predictions (Figure 1B) (C1). A GAM converts
each feature value of a data instance into its direct contribu-
tion on the �nal prediction. Since GAMs are additive models,
to obtain a prediction for a single data instance with M fea-
tures, we compute the amount each feature contributes to

Figure 9: A passage from [24] where an author used color to 
help readers see the gestalt of the formula. The author believed 
that the coloring could help a reader understand the value “y” as the 
combination of just “two things”: the green intercept term “β0,” and 
a sum of products between slope terms and feature values made 
salient with alternating purple and blue color. 

no, no, there’s only two things you need to know. Stop 
freaking out. It’s not that big a deal...” (A1) 

Furthermore, authors believed maugs could empower readers to 
develop deeper understanding of mathematical ideas by helping 
them cross-reference the formula with other instructional content: 

And so, what I think is deeply underused in the way 
we communicate at the moment is smart ways of using 
media to. . . highlight the aspects of an existing concept 
that you may have already introduced that you are now 
talking about and connecting them. So, I see color as 
kind of like a semantic plane. There are these planes 
on top of each other, and the concepts pierce the plane, 
they have all these diferent aspects that you want to 
talk about simultaneously in some order. And what 
color does is, it’s a way of slicing through this quite 
complicated story and then highlighting the diferent 
aspects, the relevant almost axes. . . (A3). 

For many authors, color served as a tool for relating formulas 
to alternative representations of the same mathematical idea else-
where in the document. Authors used color to help readers fnd 
defnitions of expressions in the prose (2), and cross-reference a 
mathematical expression with illustrative visualizations (4). 

4.2.2 Process. The process of augmenting a formula involved three 
steps and the use of myriad tools. 

Step 1. Create formula. Nearly all authors created formulas 
using the LaTeX language, although nearly all used diferent envi-
ronments to write LaTeX. Authors who were creating documents in 
LaTeX simply wrote formulas as part of their document markup (2). 
Authors who planned to use drawing tools to create maugs used 
tools like CodeCogs, MathTeX, and LaTeX2PNG to export rendered 
LaTeX as vector graphics (2) or high-resolution images (1). Individ-
ual authors also reported copying images of formulas from external 

sources like Wikipedia, and creating them without LaTeX in draw-
ing programs like Google Slides. 

Step 2. Create maugs. There were two dominant approaches 
for creating maugs: using macros built into LaTeX tools, or creat-
ing augmentations using direct manipulation drawing programs. 
Authors took both approaches, and in fact, some authors did both 
for diferent projects. Those who used LaTeX described using it for 
a limited set of kinds of maugs: color (6), labels (2), and spacing and 
alignment (1). Eight authors reported using direct manipulation 
drawing programs such as Google Slides, Microsoft PowerPoint, 
Adobe Illustrator, Mathcha, and Inkscape. They used these tools 
to introduce color (3), labels (3), and spacing (2), and two authors 
described the creation of geometric objects as expressions (2). Both 
of these approaches came with respective pain points, which are 
detailed below as authors’ challenges. 

Step 3. Embed formula in document. Authors integrated for-
mulas into their documents in several ways. The markup for formu-
las could be embedded directly in the markup code for the document. 
If authors were writing documents to be hosted on the web in lan-
guages like Markdown, they could invoke a LaTeX postprocessor 
like KaTeX to generate HTML versions of formulas at load time 
(2). Alternatively, some authors created augmented formulas in 
their program of choice, exported images of the formulas, and then 
embedded them in their documents (2). 

Two authors implemented interactivity, writing code for custom 
solutions. One author created a service that let him quickly create 
calculator widgets with editable text felds for arbitrary formulas. 
Another author implemented linked selection between visual nota-
tion and related marks in nearby diagrams by applying class tags 
to marks in the notation and diagrams and then programmatically 
highlighting related content when a user clicked those marks. 

4.2.3 Design Inspirations and Sensibilities. When augmenting for-
mulas, authors drew inspiration from external sources. Authors 
were sometimes versed in principles of visual design; three authors 
mentioned the work of Edward Tufte (the author of The Visual 
Display of Quantitative Data [59] and other seminal volumes on 
information visualization) as providing inspiration for how they 
presented formulas. Authors also drew inspiration from other aug-
mentations they had seen, as well as the types of augmentations 
that they had seen in source code editor programs, such as syn-
tax highlighting, and the ability to see both CSS selectors and the 
content that they select side-by-side. 

Authors often described their process of design as one that relied 
on “judgment calls,” “sense,” and careful thought, where it was not 
clear from the outset how best to embellish a formula (3): 

I would just characterize the entire thing as being ex-
tremely manual and extremely driven by sense. . . But I 
mean, that’s partly a function of the fact that I’m try. . . 
you know, trying to do something that I haven’t really 
tried to do before, so I’m not totally sure where things 
should be. . . (A4). 
. . .making it look like, uh. . . you know, what I want it 
to look like, that’s the friction. . . The more complex a 
diagram is, the harder it is to [rely on computational 
support]. . . just because of the number of, you know, 
small judgment calls you have to make (A12). 
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First, the order of operations in the numerator don't change 
with or without the parenthesis, so let's remove them.

x⊤W + b − μ
σ

⋅ γ + β

Now lets move γ to the left and apply it to the terms in the 
numerator. We'll group the two shifts of the bias term b 
and the mean µ together.

x⊤W ⋅ γ + (b − μ) ⋅ γ
σ

+ β

Figure 10: A derivation described in words that perhaps 
could be better demonstrated through animation. Shown are 
two steps of a six-step derivation, from [49]. The author of this pas-
sage pointed out that the derivation is complex, requiring readers to 
map transformations described in the text to changes that they can 
see between successive formulas. For instance, the text explicitly 

Let's start with a scalar function , which maps the 
input  to the output : 

Here,  could be a polynomial, exponential, or whatever 
your favorite kind of mathematical function is.

f
x y

f

y = f (x)

describes how the “γ ” term (highlighted here for emphasis) can be 
distributed to each of the terms in the fraction’s numerator. The 
author believed this derivation could be shown as an animation, 
where one formula transforms into another, with terms like “γ ” 
moving from one position to another. 

4.2.4 Challenges. Some augmented formulas could be extremely 
time-consuming to create. One author reported, for instance, spend-
ing an average of one hour per formula; another described spending 
20 minutes in LaTeX to get labels to appear just the way he wanted. 
The challenges in this section are introduced alongside visions that 
authors proposed of potential improvements to tools that could 
help address these challenges. 

Static media. Authors lamented the limitations of the static media 
in which they wrote. Few of the authors were writing in media 
where interactivity or animation were possible. Authors were often 
constrained to show readers more information about a formula 
than they wished readers to see. Some authors therefore desired 
the ability to allow readers to view details on demand (2): 

. . . any good presentation of information should cater to 
readers and consumers at multiple levels of information 
so that they can come in and get some of the high-level 
information quickly. . . as you use and work with these 
graphics, they should, like, expose more information to 
you over time (A6). 

Authors also wished for the ability to incrementally introduce 
complex formulas (5). For instance, A8 described a derivation they 
had written which required a large amount of prose to describe, 
and which he felt could be shown more succinctly as a sequence of 
animated transformations to a single formula (see Figure 10): 

. . . if I look at this, then it’s like, “Now let’s move ‘gamma’ 
to the left and apply to the terms in the numerator. . . ” 
um. . . [reading more from the document], like that’s 
a *lot* of English to describe what’s going on, and it’s 
getting all technical jargon-y, and, like, I don’t know 
how to say it any simpler, but, like, when you do it’s 

Figure 11: An imagined use of animation to draw connec-
tions across analogous representations of a mathematical 
idea in notation and other forms, from [6]. For instance, in 
this excerpt from a document A3 wrote, the formula “y = f (x)” 
could be animated in a way that shows a sequence of values plugged 
in for the variable “x .” As the value ticks upward, A3 imagined the 
point on the green curve (representing (x , f (x))) moving to refect 
the new value of “x .” 

visually, it’s just like, “Oh yeah! It sort of goes there” 
(A8). 

While many authors were excited by the idea of more dynamic 
presentations of formulas, authors’ visions of the ideal presentation 
varied quite a bit. Authors envisioned tools that could call attention 
to one set of expressions at a time (2); allow readers to click a 
formula to query for previous steps in a derivation from which 
the formula was derived (1); and to visually link formulas and 
visualizations by animating changes to expressions and marks on 
visualizations at the same time. This latter idea was described by 
A3 (see also the accompanying Figure 11): 

We can show it algebraically, so we can show “f (0)” and 
then we can, we can animate it so that “f (0),” that “ 0” 
slowly starts ticking up to be “f (1),” right? And the point 
in the curve can simultaneously move so that it, it was 

′ showing “y = f (0),” now it’s showing “y = f (1).” The 
core idea is that you have these diferent manifestations, 
they all change simultaneously, and because you can see 
them both changing, you get a very vivid picture of how 
wiggling in all the diferent manifestations corresponds 
(A3). 

Clunky markup languages. While LaTeX was the dominant lan-
guage for both authoring and augmenting formulas, authors noted 
that LaTeX was hard to use (2). One challenge was that augmenta-
tion required the insertion of macros into the markup of a formula, 
which made the markup difcult to read (see Figure 12): 
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\newcommand{\target}[1]{\textcolor{red}{#1}} 
\newcommand{\feature}[1]{\textcolor{blue}{#1}} 
\newcommand{\intercept}[1]{\textcolor{green}{#1}} 
\newcommand{\shapefunction}[1]{\textcolor{amber}{#1}} 
\newcommand{\coeff}[1]{\textcolor{purple}{#1}} 
... 
$$ \target y 
= \intercept{ \beta_0 } 
+ \shapefunction{ f_1 }(\feature{x_1}) + \shapefunction{ 
  f_2}(\feature{x_2}) + \cdots + \shapefunction{f_N}( 
  \feature{x_N}) 
$$

↵
↵

Markup code:

Rendered formula:

users place on having global understanding versus a purely
local understanding of a model.

GAMs are a generalization of linear models. To illustrate
the di�erence, consider a dataset D = {(xi,�i )}N of N data
points, where xi = (xi1,xi2, . . . ,xiM ) is a feature vector with
M features, and�i is the target, i.e., the response, variable. Let
x j denote the jth variable in feature space. A typical linear
regression model can then be expressed mathematically as:

� = �0 + �1x1 + �2x2 + · · · + �NxN

This model assumes that the relationships between the
target variable �i and features x j are linear and can be cap-
tured in slope terms �1, �2, . . . , �N . If we instead assume that
the relationship between the target variable and features is
smooth, we can write the equation for a GAM [24]:

� = �0 + f1(x1) + f2(x2) + · · · + fN (xN )
Notice here that the previous slope terms �1, �2, . . . , �N

have been replaced by smooth, shape functions fj . In both
models �0 is the model intercept, and the relationship be-
tween the target variable and the features is still additive;
however, each feature now is described by one shape func-
tion fj that can be nonlinear and complex (e.g., concave,
convex, or “bendy”) [28].

Since each feature’s contribution to the �nal prediction can
be understood by inspecting the shape functions fj , GAMs
are considered intelligible [10]. In this paper, we omit the
details of how to train GAMs, mean center shape functions,
and distinguish their regression and classi�cation versions,
which are covered in the literature [39, 40, 57, 64]. We also
note that GAM shape function charts di�er from partial de-
pendency (PD) [17] used in [36, 50]. PD assumes that features
are uncorrelated, and PD averages over the other features not
included in the chart. Therefore, PD only captures the e�ect
of modifying one feature independent of the others, whereas
GAM shape function charts, which are trained in parallel, are
e�ectively the entire model—predictions are made by sum-
ming values from all charts together and take into account
correlation among features to prevent multiple counting of
evidence. All together, this makes GAMs uniquely suited as
a model that maximizes our previous criteria and ties global
and local explanations closely together.

4 GAMUT
Given the capabilities described in section 3, we present
G����, an interactive visualization system that tightly in-
tegrates three coordinated views to support exploration of
GAMs (Figure 1): the Shape Curve View (A); the Instance
Explanation View (B); and the Interactive Table (C). To ex-
plain these views, we use an example real-estate model that
uses a house’s features to predict its sale price in US dollars.
The three views show di�erent aspects of a user-selected

instance, in this case a chosen house. Throughout the de-
scription we link features to the capabilities (C1)–(C6) that
the features support.

Shape Curve View
The Shape Curve View displays each feature’s shape function
as a line chart (Figure 1A). The user can choose which fea-
tures are displayed through the Feature Sidebar (Figure 2A):
an ordered list the features of the data, sorted by importance
to the model (C6). We will �rst describe the encoding for
one shape function chart. Consider the OverallQual feature
and its shape function chart (Figure 2B). This chart shows
the impact that the OverallQual feature has on the overall
model predictions (C6). The x-axis is the dimension of the
feature, in this case, a rating of the house’s overall material
and �nish quality, between 2 and 10; the y-axis is the con-
tribution of the feature to the output of a prediction, in this
case, US dollars. The chart shows that having a rating of 9
adds $50,000 to the predicted price, for example. Below the
x-axis is a histogram of the data density for the dimension.
This is useful for determining how many data points exists
in a particular part of feature space (C5), e.g., in Figure 2B,
we see that most houses have a OverallQual of 5 to 8.

The selected instance’s speci�c feature values are shown
as amber points on the shape function charts (C1). A data
instance has one value for every feature, i.e., one amber
point on each shape function chart, which shows where the
selected instance is located in the global model (C5). The
color of the line for each shape function encodes the �nal
predicted value if we were to vary the selected amber point’s
value to all other possible values. This is reinforced when
a user brushes over a line chart: a new point, colored by its
�nal prediction, is shown on the shape function curve, while
projected crosshairs track with the mouse cursor, enabling
users to ask interactive counterfactuals for any feature (C3).

Since the Shape Curve View shows multiple shape func-
tion charts at once, we provide a Normalize toggle for accu-
rate comparison. Turning Normalize on plots all the shape
functions on a common scale, allowing visual comparison of
the features’ di�erent degrees of impact on the predictions.
Charts with high slopes indicate more impact on predictions,
whereas charts with relatively �at lines contribute only a
little (C6). Turning o� Normalize plots each chart on its own
scale, emphasizing the shape of low-impact (�at) features.

Instance Explanation View
The Instance Explanation View shows a visualization of indi-
vidual instance predictions (Figure 1B) (C1). A GAM converts
each feature value of a data instance into its direct contribu-
tion on the �nal prediction. Since GAMs are additive models,
to obtain a prediction for a single data instance with M fea-
tures, we compute the amount each feature contributes to

Figure 12: A colorized formula and the markup that pro-
duces it, from [24]. While the formula is comprised of only 8 
identifers, 5 operators, and 4 colors, it was authored using 414 
ASCII characters in LaTeX. The markup indicating the contents 
of the formula (e.g., “\beta_0”) is tangled with the commands for 
formatting expressions (e.g., “\intercept”). 

That code gets horrible looking, because you’re creating 
a custom macro for every color. And if you want to have 
any sort of readable or semantic name, like “purple” 
or “shape-function-color,” imagine doing that for 10 
characters, and you have just, the worst, like it looks so 
long and complicated to render this small little thing, 
so that feels unmaintainable (A1). 

Furthermore, it could be difcult to keep augmentation-heavy 
markup syntactically correct, because augmentation might involve 
managing a large number of nested macros: 

I mean, the coding itself was, I think, the struggle, just 
because matching all the braces up and I’m not using a 
particularly good IDE for LaTeX, so, you know. . . just. . . 
Yeah, so just getting everything, just getting it to compile 
is a struggle (A12). 

One author tried to use manim for presenting augmentation 
notation. manim is a markup language for math animations that 
provides built-in support for colorizing and animating formulas. 
While this tool is more expressive than LaTeX, the author reported 
it had a steep learning curve, estimating it would take a newcomer 
1-2 months of use before understanding its conceptual model. 

Ugly defaults. When authors used markup languages for author-
ing maugs of some complexity, they were sometimes dissatisfed 
with the rendering of those maugs (2). One of the most widely-
used packages for diagramming formulas yielded a design that one 
author described as “horrifc” (see Figure 13): 

I’ve got these labels here. Uh. . . these labels are at dif-
ferent elevations on the page. Um. . . that’s confusing. 
That’s silly. They should be at the same height. Um, so I 
don’t like that. . . [later] . . . and then the third thing that 

immediately stands out to me. . . is just the bad spacing. 
Um. . . like, you have all this extra space that LaTeX is 
adding around the braces. . . Like right here, you can 
barely even tell that “b” is multiplied by “i ,” because the 
“i” is six inches of to the right (A12). 

Sometimes, the document compiler (i.e., LaTeX) would unexpect-
edly alter the layout of a document to accommodate augmentations, 
which was also undesired: 

In previous versions of this, I had tried diferent types of 
coloring. For example, using color boxes. Uh. . . around 
the text instead. . . it messes up with like the line heights 
and stuf (A9). 

Tedious graphical editing. When authors used graphical drawing 
tools, they experienced all of the problems intrinsic to software for 
graphical editing in general. For those experimenting with novel 
presentations, this was described as a particularly tedious part of the 
process (4). Tasks such as aligning content, adding augmentations, 
managing copies of content, and moving groups of related content, 
were described as tedious to perform. 

Just the manual-ness of this process. . . And it’s not just 
the inconvenience of that, but it’s obviously highly error-
prone. Like it would be super easy for me to leave the 
incorrect label somewhere, or, just have something that’s 
totally wrong on there, because I overlooked the fact that 
I’d actually updated something on there, or copy-and-
pasted the label from another page, so I got the same 
formatting. . . Uh, and then just forget to edit it after 
I’ve pasted it (A4). 

One approach to mitigating this tedium was simply to be less 
precise. One author described how the tools he used, in this case 
PowerPoint instead of Illustrator, lessened the temptation to achieve 
a pixel-perfect layout. Another author speculated that some author-
ing efort could be alleviated if tools were aware of the semantics 
of formulas and their augmentations: 

In InkScape. . . nothing’s attached to anything, right? 
So everything’s foating. There’s no semantic meaning 
to anything. . . . . . What it would it look like in Google 
Slides if you could attach pointing labels to things, and 
now when I move the thing, the label moves? (A4) 

Hitting the sweet spot of augmentation. Authors were faced with 
complex design decisions around augmentation, namely how to aug-
ment formulas in a document while keeping the document readable 
as a whole. This led to a number of open questions about efective 
augmentation design. For instance, one author was concerned with 
using labels to describe expressions, thinking that they imposed on 
readers a choice of which labels to read and in what order. For this 
reason, this author preferred to use pseudo-labels, relating expres-
sions to prose using color, because it meant that readers would not 
have to choose in what order to read the descriptive text: 

. . .where [among the labels] do you start reading? Be-
cause it’s no longer really like a left-to-right thing, like 
a sentence is. And if you’re reading a sentence, you 
know exactly where to start reading, because that’s how 
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algebraically, if we use exponential form. Say we have two complex numbers, r1e
i✓1 and r2e

i✓2 . If we
multiply them together:

⇣
r1e

i✓1
⌘

·
⇣
r2e

i✓2
⌘

= r1r2e
i✓1ei✓2

by exponent laws, this just becomes:

= r1r2 · ei✓1+i✓2

= r1r2 · ei(✓1+✓2)

So that’s another explanation of why the angles of complex numbers add when we multiply them—the
angles are just exponents!!! Likewise, the radii multiply, because the radii are just coe�cients. In a
sense, that’s the fundamental reason angles add. We figured out that the angles add empirically, i.e., by
multiplying together a whole bunch of complex numbers and noticing the pattern. But we didn’t actually
figure out what causes that pattern. We didn’t use logical deduction to prove that the angles add when
we multiply complex numbers. But now, we have.

We’ve learned a lot of di↵erent ways to write complex numbers. Let’s summarize.

• We can write complex numbers in rectangular form, describing them as how far right and how far
up from the origin they are:

– We can write then as a coordinate pair:
(a, b)

– We can write them as a single expression:

a + bi

• We can write complex numbers in polar form, describing how far away from the origin they are and
at what angle:

– We can write them as a coordinate pair:
r 6 ✓

– We can write them as a single expression, as a power of i:

ri
✓

⇡/2 (✓ in radians)

– We can write them as a single expression, using trig functions:

r (cos ✓ + i sin ✓)

– We can write them as a single expression, using an exponential function:

rei✓

Here’s a LATEX diagram of all this that I’m going to include not because it’s particularly clear or pretty,
but because it took forever to make. A hand-drawn version of that would be better. Make your own!!!

rectangular/Cartesian formsz }| {
(a, b) = a|{z}

real
component

+ b|{z}
imaginary
component

·i =

polar/mod-arg formsz }| {

r 6 ✓ = ri
✓

⇡/2 =

radiusz}|{
r ·

0
BB@ cos

anglez}|{
✓| {z }

real
component

+i · sin

anglez}|{
✓| {z }

imaginary
component

1
CCA =

radiusz}|{
r ei·

anglez}|{
✓

| {z }
exponential/
Euler form

3Figure 13: An example of a formula for which the default layout algorithms failed to produce a satisfactory layout for an 
author, from [3]. A12 named issues with this presentation including unwanted horizontal spacing (for instance, a large distance between 
the second “b” and the subsequent “·” operation), and labels that do not vertically align with each other. 

sentences work. They go from left-to-right, top-down, 
unless it’s another language (A8). 

Authors were also sensitive to the possibility that there could be 
too much color added to a document (3): 

. . . it was tricky because we tried to minimize the amount 
of coloring, because of that, we used color in other dia-
grams and in other ways. So one, I used to actually use 
more color, but I found that, like, it was. . . Some of the 
information wasn’t as important as others, so I got rid 
of a lot of it, yeah (A9). 

Sensitivity to over-coloring was representative of a larger con-
cern that one author described as managing the “budget” of aug-
mentations, or recognizing that one can only add so many augmen-
tations before they begin to confict with each other: 

But there’s an allocation problem. . . you’ve got a little 
budget of variables, planes, that you have access to, but 
you can’t use them for more than one thing. So once I’ve 
chosen what to use color for, I can’t really use it again. . . 
So you’ve got to juggle how you spend your budget of 
stuf (A3). 

Making cross-cutting style changes. Authors would use similar 
maugs for similar formulas in the same document, like using a 
single color for related expressions in multiple formulas (5). When 
a document was very long, managing styles that cut across the 
document could be prohibitively difcult. One author of a very long 
document had colorized formulas using a graphical editing tool. 
While he made an efort to use similar colors for related expressions 
that appeared in a subset of formulas, he thought interface support 
was necessary to consistently colorize related expressions the same 
way across the whole document: 

. . . another level of efort too far and would really need 
like software support, is to make the colors correspond 
to the nature of the equation. So. . . like if, maybe I’ve 
got the gradient of “theta” there, maybe that’s always 
gray in every equation. Or everything involving some 
kind of gradient calculation stays that color (A8). 

If an author was augmenting formulas with LaTeX, they could 
leverage macros to experiment with cross-cutting style changes, 
encoding design decisions in macros and testing out alternatives by 
changing their expansions. For instance, one author creating macros 
for the colors assigned to classes of expressions in a document 
where formulas were rendered using the KaTeX library: 

So there’s macros for colors. Thank God. I use a lot of 
macros. I defne my own macros to make it easier to 
even write this stuf, just because certain conventions 
happen again and again. . . So what I’ve gotta do, is I’ve 
got to make sure the way I’ve authored the document, 
that’s a switch that I can fip really easily at any point 
(A3). 

Additional Feature Requests. When given license to consider fu-
ture tools for presenting math notation, authors suggested addi-
tional capabilities they wished for their tools to have. These include 
new types of maugs (e.g., commands for programmatically changing 
the sizes of expressions, novel visual representations of indices for 
matrices and vectors), the ability to more easily reuse augmented 
formulas outside of their original document, and interactive simu-
lations and computations. 

5 DESIGN RECOMMENDATIONS 
In this section, we derive a set of recommendations for what features 
tools should provide to help authors create augmented notation, 
connecting the recommendations to evidence from the two studies. 
We note that the recommendations are not requirements, in that a 
useful authoring tool need not satisfy all of these recommendations. 
Rather, each one indicates an opportunity for a future tool to lower 
the threshold for authors who would want to create maugs but 
under current circumstances would not do so. 

The recommendations support three augmentation approaches: 
next-generation markup languages that succeed LaTeX, graphical 
editors that let authors augment formulas with direct manipula-
tion; and intelligent design assistants that automatically augment 
formulas on an author’s behalf. Below, recommendations are frst 
presented that apply to all three of these augmentation approaches, 
followed by more specifc recommendations for each approach. 

5.1 General recommendations 
R1. Support multiple kinds of maugs in each formula. A majority of 

documents (68.0%) and nearly half of all formulas (47.7%) used more 
than one kind of maug. Within a formula, diferent kinds of maugs 
could be used to reinforce each other, such as introducing space 
in a formula in a way that allowed labels to be visually grouped 
with expressions without leader lines. To support these authoring 
patterns, tools should make it possible to apply multiple kinds of 
maugs in a single formula. 
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R2. Help authors color formulas and the content they relate to. 
Color was used to visually link formulas to other content in most 
(70.2%) documents. Color related expressions to descriptions in 
prose, expressions in other formulas, code, and the contents of 
visualizations. Our informants used color to help readers access 
analogous representations of the same mathematical idea in no-
tation, prose, and visuals. Tools may be able to assist authors by 
helping them pick and apply color palettes across the many formu-
las and related content in a document. 

R3. Support details-on-demand and animations. Our informants 
felt limited by the constraints imposed by the static media in which 
they authored, and believed that the presentation of notation could 
be improved with interactivity, animation, and details-on-demand. 
For instance, authors desired the ability to show detailed descrip-
tions of expressions on-demand rather than all at once, and believed 
that derivations might be more efectively demonstrated with an-
imations on a single formula than with a conventional prose de-
scription of the derivation. 

R4. Provide input widgets for setting, constraining, and indirectly 
infuencing expressions values. Interactivity was uncommon in aug-
mented formulas, perhaps due to the static nature of many docu-
ments, or the challenge of implementing interactivity. That said, 
the most common form of interactivity was the use of external 
controls to infuence expression values, appearing in 8.5% of docu-
ments. Input widgets served three purposes: directly setting values 
in formulas, setting limits on the values they could take on, and 
setting hidden variables used in computations. Toolkits that sup-
port interactive computation of expression values may wish to let 
readers control expressions in each of these three ways. 

R5. Respect the document’s style. Maugs are not shown in isola-
tion; rather, they are a part of documents that have may have been 
painstakingly formatted. One informant described a problematic 
augmentation macro that altered the spacing of lines. Augmenta-
tion tools should integrate nicely into the editing workfow for an 
entire document, and one important part of a clean integration of 
an augmentation tool is to respect the document’s existing style. 

5.2 Markup language design 
R6. Make markup languages easy to read and write. Our infor-

mants found it difcult to read and edit markup code for augmented 
formulas due to the clutter that was introduced by macros for color-
ing and labeling expressions. Markup languages could be redesigned 
to separate code for augmenting a formula from the specifcation of 
the underlying formula. Such an approach has seen widespread use 
in language design in general, from the widely used HTML and CSS, 
to HCI systems such as Penrose [62], which ofer complementary 
languages for specifying content and style of visual material. 

R7. Let authors embed visualizations in formulas. In 8.5% of docu-
ments, augmented formulas contained visualizations as expressions 
such as geometric objects, charts, and images. Markup languages 
should let authors embed visualizations like these in formulas. 

R8. Support a rich design space for labeling expressions. In the 
reviewed documents, many labels contained math notation (29.8%), 
and some contained visuals like icons (8.5%). Labels sometimes 

applied to nested expressions, describing a formula at multiple levels 
of granularity. In some cases, one expression had multiple labels, 
or one label applied to multiple expressions. Markup languages 
for augmented notation should give authors fexibility in how they 
assign labels to expressions, and what content goes into a label. 

5.3 Graphical editor design 
R9. Bridge the divide between LaTeX and vector graphics. Infor-

mants frequently created formulas using LaTeX, and then exported 
them as vector graphics or bitmaps so that they could be edited 
in graphical editing programs. Some editors (e.g., PowerPoint) let 
authors create bitmaps from LaTeX within the editor, though none 
of our informants mentioned using a graphical editor that let them 
create vector graphics from LaTeX. A related issue is the tedium 
of graphical editing. Perhaps future tools could make easier for 
authors to align, augment, and move expressions if the tools were 
aware of the underlying structure of formulas. 

5.4 Automated tool design 
Could automated tools augment formulas with minimal author 
input, for instance by automatically colorizing expressions and the 
corresponding text that describes them? Perhaps, though such tools 
would frst have to address the following challenges: 

R10. Identify and augment meaningful expressions. An automated 
tool may need to identify expressions that are worth augmenting. 
Our content analysis makes it clear that it is not enough to augment 
mathematical identifers like “x” or “tk ”. Only a minority of maugs 
applied to such identifers (31.4%), and even fewer applied to nu-
meric literals, operators, and entire formulas. Rather, nearly half of 
augmented formulas were expressions that could not be classifed 
as any of the above (49.9%), including function calls, and opera-
tions involving multiple operands. To match patterns of human 
augmentation, automated tools would need to identify meaningful, 
signifcant higher-level expressions that merit being augmented. 

R11. Limit the number and variety of augmentations. Our infor-
mants believed that the efectiveness of augmentations tapered of 
when notation was augmented without care. For instance, authors 
held beliefs that a document could be colorized too much, that color 
could not be reused for more than one concept, or even that labels 
could induce a cognitive load greater than colorizing a formula the 
same colors as prose that described it. While further studies are 
needed to characterize the complex tradeofs between these design 
decisions, it is clear that a good automated tool would provide 
the right amount of the right kinds of augmentation, rather than 
attempting to augment as many expressions as it can. 

6 LIMITATIONS AND FUTURE WORK 

6.1 Limitations 
The generalizability of the fndings from the content analysis is 
limited by the selection of documents. Several categories of doc-
uments (e.g., videos, course notes) saw only light representation. 
Therefore, we do not claim that theoretical saturation (cf. [12, page 
263]) was achieved. The under-representation of some categories of 
documents suggests that the inventory of maugs may not be com-
plete. For instance, animation is not in the inventory, even though 
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it was of considerable interest to authors, because it appeared in 
only one document. It should also be noted that the frequencies of 
maugs may not be representative of all math documents. 

While authors ofered their beliefs about how augmentations 
could help readers, our interview study does not provide clear 
guidance how authors should ideally augment formulas for their 
readers. Follow-up studies would be needed to assess how various 
augmentations afect the reading experience, including both the 
benefts and drawbacks of augmentation. 

6.2 Future Work 
6.2.1 Authoring tools for maugs. The recommendations in Sec-
tion 5 and the inventory of maugs from Section 3 provide a partial 
specifcation of capabilities that maug authoring tools should have, 
whether that tool is a markup language, a graphical tool, an auto-
mated assistant, or something else. Visualization grammars such 
as Vega-Lite [56] and Canis [17] have enabled the creation of new 
tools for visualization generation and authoring. Could similar tools 
be developed for augmenting mathematical notation? Could TeX 
be extended with primitives for embedded visualizations, style, an-
notations, and interactivity? Perhaps entirely new languages are 
needed to support the conficting goals of augmenting formulas 
and producing markup that is readable, as well as for authoring 
designs that animate formulas or show details on demand. 

6.2.2 Characterizing the usability of augmented math documents. 
Even if authors have tools for augmenting formulas, they need an 
understanding of efective design patterns if they are to improve 
the reading experience. Further research is needed to explore which 
kinds of maugs are the most efective. Questions to be investigated 
include: Should expressions be defned by colorizing or labeling? 
Given a formula that contains dozens of symbols, what is the max-
imum number of symbols that could be labeled before the labels 
overwhelm a reader? Answering these questions may require em-
pirical studies assessing how outcomes like learning, cognitive load, 
and memorability are afected by diferent design patterns. 

7 CONCLUSION 
Two qualitative studies were presented to shed light on how authors 
embellish the presentation of mathematical notation to improve its 
readability. The frst study, a content analysis, revealed that authors 
created highly divergent presentations of formulas, incorporating 
embedded visualizations, text styling, space, annotations, and inter-
activity. The majority of documents made use of color to visually 
link expressions to other content such as prose descriptions, related 
formulas, diagrams, and source code. The second study, an inter-
view study, revealed that the authoring process is tedious. Authors 
experienced signifcant challenges using current tools. This work 
provides an inventory of features that future authoring tools should 
provide to make visual and interactive embellishments both expres-
sive and usable, summarized in eleven recommendations for the 
design of future markup-based, graphical editing, and automated 
authoring tools. 
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A APPENDIX 

A.1 Documents 
What follows on the next two pages are two tables containing the 
IDs, types, titles, and public URLs of all documents analyzed in 
the content analysis (Section 3). Readers can also fnd additional 
information about the content analysis, including an annotation 
guide and a spreadsheet containing the complete analysis results 
for all 281 formulas, in the supplemental material. 
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ID Type Title URL (if document is public) 

P1 Research paper Towards Grounding of Formulae https://www.aclweb.org/anthology/2020.sdp-1.16.pdf 
P2 Research paper Continuous Prefetch for Interactive Data Ap- https://arxiv.org/pdf/2007.07858.pdf 

plications 

P3 Research paper Gamut: A Design Probe to Understand How https://fredhohman.com/papers/19-gamut-chi.pdf 
Data Scientists Understand Machine Learning 
Models 

S1 Research slides On Unbalanced Optimal Transport: An Anal- https://icml.cc/virtual/2020/poster/6163 
ysis of Sinkhorn Algorithm 

S2 Research slides Neural Clustering Processes https://icml.cc/virtual/2020/poster/6425 

S3 Research slides Deep reconstruction of strange attractors https://nips.cc/virtual/2020/protected/poster_ 
from time series 021bbc7ee20b71134d53e20206bd6feb.html 

S4 Research slides Accountable Of-Policy Evaluation With Ker- https://icml.cc/virtual/2020/poster/6683 
nel Bellman Statistics 

S5 Research slides Autoregressive Score Matching https://nips.cc/virtual/2020/protected/poster_ 
4a4526b1ec301744aba9526d78fcb2a6.html 

S6 Research slides Topological Autoencoders https://icml.cc/virtual/2020/poster/5851 

S7 Research slides Meta-Consolidation for Continual Learning https://nips.cc/virtual/2020/protected/poster_ 
a5585a4d4b12277fee5cad0880611bc6.html 

S8 Research slides Deep Transformation-Invariant Clustering https://nips.cc/virtual/2020/protected/poster_ 
5a5eab21ca2a8fef4af5e35709ecca15.html 

S9 Research slides Neural Anisotropy Directions https://nips.cc/virtual/2020/protected/poster_ 
cf02a74da64d145a4aed3a577a106ab.html 

S10 Research slides Bayesian Deep Ensembles via the Neural Tan- https://nips.cc/virtual/2020/protected/poster_ 
gent Kernel 0b1ec366924b26fc98fa7b71a9c249cf.html 

D1 Distill Why Momentum Really Works https://distill.pub/2017/momentum/ 
D2 Distill The Paths Perspective on Value Learning https://distill.pub/2019/paths-perspective-on-value-

learning/ 
W1 Web article Pi (π ) Explained Visually https://setosa.io/ev/pi/ 
W2 Web article Conditional Probability Explained Visually https://setosa.io/ev/conditional-probability/ 
W3 Web article Pixels and their neighbors: Finite volume https://row1.ca/pixels-and-their-neighbors 

W4 Web article An Interactive Guide To The Fourier Trans- https://betterexplained.com/articles/an-interactive-guide-
form to-the-fourier-transform/ 

W5 Web article Understanding the Fourier Transform https://web.archive.org/web/20120418231513/www. 
altdevblogaday.com/2011/05/17/understanding-the-
fourier-transform/ 

W6 Web article Surprising Uses of the Pythagorean Theorem https://betterexplained.com/articles/surprising-uses-of-
the-pythagorean-theorem/ 

W7 Web article An Intuitive (and Short) Explanation of Bayes https://betterexplained.com/articles/an-intuitive-and-
Theorem short-explanation-of-bayes-theorem/ 

W8 Web article Image Kernels https://setosa.io/ev/image-kernels/ 
W9 Web article Diferential Equations https://observablehq.com/@hzsteinberg/diferential-

equations 

Table 2: Documents analyzed in Study 1 (continued in Table 3). Each document is listed with the ID that identifes it in this paper, its 
type, title, and a URL at which the document can be accessed, if a public URL is available. 
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ID Type Title URL (if document is public) 

W10 Web article Importance of Distance Metrics in Machine https://towardsdatascience.com/importance-of-distance-
Learning Modelling metrics-in-machine-learning-modelling-e51395fe60d 

W11 Web article Wallpaper Generator - Volumetric light scat- https://chuckleplant.github.io/2017/05/28/light-shafts.html 
tering, Part 1 of 2 

W12 Web article Rocket Golf https://what-if.xkcd.com/85/ 
W13 Web article Building a Powerful DQN in TensorFlow 2.0 https://medium.com/analytics-vidhya/building-a-

(explanation & tutorial) powerful-dqn-in-tensorfow-2-0-explanation-tutorial-
d48ea8f3177a 

W14 Web article Build Your Own Tensorfow https://taliesin.ai/projects/edu/indaba-2019/ 
W15 Web article Food Discovery with Uber Eats: Using Graph https://eng.uber.com/uber-eats-graph-learning/ 

Learning to Power Recommendations 

V1 Video Derivation of the Navier-Stokes Equations https://www.youtube.com/watch?v=zWdnf3Uh1RE 

V2 Video But what is the Fourier Transform? A visual https://www.youtube.com/watch?v=spUNpyF58BY 
introduction. 

B1 Book chapter In pursuit of the unknown: 17 equations that (no public URL) 
changed the world (Chapter 3 only) 

B2 Book chapter Everyday Data Science (Chapter 7 only) (no public URL) 
B3 Book chapter Byrne’s edition of Euclid’s Geometry (Book 1, https://www.c82.net/euclid/book1/ 

frst fve propositions only) 
B4 Book chapter A Student’s Guide to Maxwell’s Equations (no public URL) 

(Chapter 1 only) 
B5 Book chapter Inside Deep Learning (Chapter 2 only) (no public URL) 
B6 Book chapter Human-in-the-Loop Machine Learning (no public URL) 

(Chapter 3 only) 
N1 Course notes Exponential Improvements http://www.andrusia.com/math/complex-numbers/eulers-

identity.pdf 
L1 Course slides Dif-in-dif I & II https://evalf20.classes.andrewheiss.com/slides/08-

slides.pdf 
T1 Tweet Tweet by @redblobgames https://twitter.com/redblobgames/status/ 

1111699048472305664 

T2 Tweet Tweet by @mdekstrand https://twitter.com/mdekstrand/status/ 
1373400822470504451 

T3 Tweet Tweet by @kwinkunks https://twitter.com/kwinkunks/status/ 
1233142784217034757 

O1 Other Math and Analogies https://betterexplained.com/articles/math-and-analogies/ 
O2 Other Answer to "Visual Pythagorean demonstra- https://matheducators.stackexchange.com/a/40 

tion" 
O3 Other MathType: Tips to use with Microsoft Word https://docs.wiris.com/en/mathtype/ofce_tools/tips/ 

tips_word#drawing_attention_to_your_equations_with_ 
comments_and_annotations 

O4 Other Example - Sine Waves in Time or Space https://airladon.github.io/FigureOne/examples/ 
Traveling%20Wave%2002%20-%20Sine%20Waves/ 

Table 3: Documents analyzed in Study 1 (continued from Table 2). Each document is listed with the ID that identifes it in this paper, 
its type, title, and a URL at which the document can be accessed, if a public URL is available. 
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